Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 347
Filtrar
1.
Bioresour Technol ; 398: 130531, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38447620

RESUMEN

Glycolic acid is widely employed in chemical cleaning, the production of polyglycolic acid-lactic acid, and polyglycolic acid. Currently, the bottleneck of glycolate biosynthesis lies on the imbalance of metabolic flux and the deficiency of NADPH. In this study, a dynamic regulation system was developed and optimized to enhance the metabolic flux from glucose to glycolate. Additionally, the knockout of transhydrogenase (sthA), along with the overexpression of pyridine nucleotide transhydrogenase (pntAB) and the implementation of the Entner-Doudoroff pathway, were performed to further increase the production of the NADPH, thereby increasing the titer of glycolate to 5.6 g/L. To produce glycolate from corn stover hydrolysate, carbon catabolite repression was alleviated and glucose utilization was accelerated. The final strain, E. coli Mgly10-245, is inducer-free, achieving a glycolate titer of 46.1 g/L using corn stover hydrolysate (77.1 % of theoretical yield). These findings will contribute to the advancement of industrial glycolate production.


Asunto(s)
Escherichia coli , NADP Transhidrogenasas , Escherichia coli/genética , Escherichia coli/metabolismo , Zea mays/metabolismo , NADP/metabolismo , Glicolatos/metabolismo , NADP Transhidrogenasas/metabolismo , Ácido Poliglicólico/metabolismo , Glucosa/metabolismo , Ingeniería Metabólica
2.
Eur J Endocrinol ; 190(2): 130-138, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38261461

RESUMEN

BACKGROUND: Pathogenic variants in the nicotinamide nucleotide transhydrogenase gene (NNT) are a rare cause of primary adrenal insufficiency (PAI), as well as functional impairment of the gonads. OBJECTIVE: Despite the description of different homozygous and compound heterozygous NNT variants in PAI patients, the extent to which the function and expression of the mature protein are compromised remains to be clarified. DESIGN: The activity and expression of mitochondrial NAD(P)+ transhydrogenase (NNT) were analyzed in blood samples obtained from patients diagnosed with PAI due to genetically confirmed variants of the NNT gene (n = 5), heterozygous carriers as their parents (n = 8), and healthy controls (n = 26). METHODS: NNT activity was assessed by a reverse reaction assay standardized for digitonin-permeabilized peripheral blood mononuclear cells (PBMCs). The enzymatic assay was validated in PBMC samples from a mouse model of NNT absence. Additionally, the PBMC samples were evaluated for NNT expression by western blotting and reverse transcription quantitative polymerase chain reaction and for mitochondrial oxygen consumption. RESULTS: NNT activity was undetectable (<4% of that of healthy controls) in PBMC samples from patients, independent of the pathogenic genetic variant. In patients' parents, NNT activity was approximately half that of the healthy controls. Mature NNT protein expression was lower in patients than in the control groups, while mRNA levels varied widely among genotypes. Moreover, pathogenic NNT variants did not impair mitochondrial bioenergetic function in PBMCs. CONCLUSIONS: The manifestation of PAI in NNT-mutated patients is associated with a complete lack of NNT activity. Evaluation of NNT activity can be useful to characterize disease-causing NNT variants.


Asunto(s)
Enfermedad de Addison , NADP Transhidrogenasas , Animales , Humanos , Ratones , Leucocitos Mononucleares/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , NAD , NADP Transhidrogenasa AB-Específica/genética , NADP Transhidrogenasa AB-Específica/metabolismo , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo
3.
Toxicol Appl Pharmacol ; 480: 116734, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37924851

RESUMEN

Human skin is daily exposed to oxidative stresses in the environment such as physical stimulation, chemical pollutants and pathogenic microorganisms, which are likely to cause skin diseases. As important post-translational modifications, protein ubiquitination and deubiquitination play crucial roles in maintaining cellular homeostasis by the proteolytic removal of oxidized proteins. We have previously reported that the expression of ubiquitin-specific protease 47 (USP47), a kind of deubiquitinating enzymes (DUBs), was significantly elevated in response to oxidative stress. However, the role of USP47 in cutaneous oxidative injury remains unclear. Usp47 wild-type (Usp47+/+) mice and Usp47 knockout (Usp47-/-) mice were used to establish two animal models of oxidative skin damage: (1) radiation- and (2) imiquimod (IMQ)-induced skin injury. Loss of Usp47 consistently aggravated mouse skin damage in vivo. Subsequently, we screened 63 upregulated and 170 downregulated proteins between the skin tissues of wild-type and Usp47-/- mice after 35 Gy electron beam radiation using proteomic analysis. Among the dysregulated proteins, nicotinamide nucleotide transhydrogenase (NNT), which has been reported as a significant regulator of oxidative stress and redox homeostasis, was further investigated in detail. Results showed that NNT was regulated by USP47 through direct ubiquitination mediated degradation and involved in the pathogenesis of cutaneous oxidative injury. Knockdown of NNT expression dramatically limited the energy production ability, with elevated mitochondrial reactive oxygen species (ROS) accumulation and increased mitochondrial membrane potential in irradiated HaCaT cells. Taken together, our present findings illustrate the critical role of USP47 in oxidative skin damage by modulating NNT degradation and mitochondrial homeostasis.


Asunto(s)
NADP Transhidrogenasas , Animales , Humanos , Ratones , Mitocondrias/metabolismo , NADP Transhidrogenasas/metabolismo , Estrés Oxidativo/fisiología , Proteómica , Proteasas Ubiquitina-Específicas/metabolismo
4.
Free Radic Biol Med ; 208: 260-271, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37573896

RESUMEN

Mitochondria use hydrogen peroxide (H2O2) as a mitokine for cell communication. H2O2 output for signaling depends on its rate of production and degradation, both of which are strongly affected by the redox state of the coenzyme Q10 (CoQ) pool and NADPH availability. Here, we propose the CoQ pool and nicotinamide nucleotide transhydrogenase (NNT) have evolved to be central modalities for mitochondrial H2O2 signaling. Both factors play opposing yet equally important roles in dictating H2O2 availability because they are connected to one another by two central parameters in bioenergetics: electron supply and Δp. The CoQ pool is the central point of convergence for electrons from various dehydrogenases and the electron transport chain (ETC). The increase in Δp creates a significant amount of protonic backpressure on mitochondria to promote H2O2 genesis through CoQ pool reduction. These same factors also drive the activity of NNT, which uses electrons and the Δp to eliminate H2O2. In this way, electron supply and the magnitude of the Δp manifests as a redox connection between the two sentinels, CoQ and NNT, which serve as opposing yet equally important forces required for budgeting H2O2. Taken together, CoQ and NNT are sentinels linked through mitochondrial bioenergetics to manage H2O2 availability for interorganelle and intercellular redox signaling.


Asunto(s)
Peróxido de Hidrógeno , NADP Transhidrogenasas , Peróxido de Hidrógeno/metabolismo , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Ubiquinona/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción
5.
Mol Cell ; 83(11): 1887-1902.e8, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37244254

RESUMEN

Interleukin-1ß (IL-1ß) is a key protein in inflammation and contributes to tumor progression. However, the role of IL-1ß in cancer is ambiguous or even contradictory. Here, we found that upon IL-1ß stimulation, nicotinamide nucleotide transhydrogenase (NNT) in cancer cells is acetylated at lysine (K) 1042 (NNT K1042ac) and thereby induces the mitochondrial translocation of p300/CBP-associated factor (PCAF). This acetylation enhances NNT activity by increasing the binding affinity of NNT for NADP+ and therefore boosts NADPH production, which subsequently sustains sufficient iron-sulfur cluster maintenance and protects tumor cells from ferroptosis. Abrogating NNT K1042ac dramatically attenuates IL-1ß-promoted tumor immune evasion and synergizes with PD-1 blockade. In addition, NNT K1042ac is associated with IL-1ß expression and the prognosis of human gastric cancer. Our findings demonstrate a mechanism of IL-1ß-promoted tumor immune evasion, implicating the therapeutic potential of disrupting the link between IL-1ß and tumor cells by inhibiting NNT acetylation.


Asunto(s)
NADP Transhidrogenasas , Neoplasias , Humanos , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Acetilación , Procesamiento Proteico-Postraduccional , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/genética
6.
Arch Toxicol ; 97(2): 441-456, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36336710

RESUMEN

Cisplatin is recommended as a first-line chemotherapeutic agent against advanced non-small cell lung cancer (NSCLC), but acquired resistance substantially limits its clinical efficacy. Recently, DNA methylation has been identified as an essential contributor to chemoresistance. However, the precise DNA methylation regulatory mechanism of cisplatin resistance remains unclear. Here, we found that nicotinamide nucleotide transhydrogenase (NNT) was silenced by DNA hypermethylation in cisplatin resistance A549 (A549/DDP) cells. Also, the DNA hypermethylation of NNT was positively correlated to poor prognosis in NSCLC patients. Overexpression of NNT in A549/DDP cells could reduce their cisplatin resistance, and also suppressed their tumor malignancy such as cell proliferation and clone formation. However, NNT enhanced sensitivity of A549/DDP cells to cisplatin had little to do with its function in mediating NADPH and ROS level, but was mainly because NNT could inhibit protective autophagy in A549/DDP cells. Further investigation revealed that NNT could decrease NAD+ level, thereby inactivate SIRT1 and block the autophagy pathway, while re-activation of SIRT1 through NAD+ precursor supplementation could antagonize this effect. In addition, targeted demethylation of NNT CpG island via CRISPR/dCas9-Tet1 system significantly reduced its DNA methylation level and inhibited the autophagy and cisplatin resistance in A549/DDP cells. Thus, our study found a novel chemoresistance target gene NNT, which played important roles in cisplatin resistance of lung cancer cells. Our findings also suggested that CRISPR-based DNA methylation editing of NNT could be a potential therapeutics method in cisplatin resistance of lung cancer.


Asunto(s)
Antineoplásicos , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , NADP Transhidrogenasas , Humanos , Células A549 , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Apoptosis , Autofagia , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Proliferación Celular , Cisplatino/farmacología , ADN , Metilación de ADN , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , NAD/metabolismo , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Sirtuina 1/metabolismo
7.
J Clin Endocrinol Metab ; 108(6): 1464-1474, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-36478070

RESUMEN

CONTEXT: Nicotinamide nucleotide transhydrogenase (NNT) acts as an antioxidant defense mechanism. NNT mutations cause familial glucocorticoid deficiency (FGD). How impaired oxidative stress disrupts adrenal steroidogenesis remains poorly understood. OBJECTIVE: To ascertain the role played by NNT in adrenal steroidogenesis. METHODS: The genotype-phenotype association of a novel pathogenic NNT variant was evaluated in a boy with FGD. Under basal and oxidative stress (OS) induced conditions, transient cell cultures of the patient's and controls' wild-type (WT) mononuclear blood cells were used to evaluate antioxidant mechanisms and mitochondrial parameters (reactive oxygen species [ROS] production, reduced glutathione [GSH], and mitochondrial mass). Using CRISPR/Cas9, a stable NNT gene knockdown model was built in H295R adrenocortical carcinoma cells to determine the role played by NNT in mitochondrial parameters and steroidogenesis. NNT immunohistochemistry was assessed in fetal and postnatal human adrenals. RESULTS: The homozygous NNT p.G866D variant segregated with the FGD phenotype. Under basal and OS conditions, p.G866D homozygous mononuclear blood cells exhibited increased ROS production, and decreased GSH levels and mitochondrial mass than WT NNT cells. In line H295R, NNT knocked down cells presented impaired NNT protein expression, increased ROS production, decreased the mitochondrial mass, as well as the size and the density of cholesterol lipid droplets. NNT knockdown affected steroidogenic enzyme expression, impairing cortisol and aldosterone secretion. In human adrenals, NNT is abundantly expressed in the transition fetal zone and in zona fasciculata. CONCLUSION: Together, these studies demonstrate the essential role of NNT in adrenal redox homeostasis and steroidogenesis.


Asunto(s)
Neoplasias de la Corteza Suprarrenal , NADP Transhidrogenasas , Masculino , Recién Nacido , Humanos , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Antioxidantes , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Neoplasias de la Corteza Suprarrenal/genética
8.
Pathol Res Pract ; 240: 154183, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36327824

RESUMEN

Long non-coding RNAs (lncRNAs) are becoming more prevalent in the cancer field arena, with functional roles in both oncogenic and onco-suppressive pathways. Despite their widespread aberrant expression in a range of human malignancies, the biological activities of the ncRNAs majority are unknown. All showed the involvement of the lncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1). Since NNT-AS1 influences cellular proliferation, invasion, migration, apoptosis, and metastasis, this lncRNA appears to be linked to deregulating the normal cellular processes driving malignancy. This was observed in breast cancer (BC), gastric cancer (GC), colorectal cancer (CRC), epithelial ovarian cancer (EOC), and hepatocellular carcinoma (HCC). The current narrative non-systematic review will discuss "the significance of lncRNAs in cancer", as well as "lncRNAs future potential application(s) as diagnostic or predictive biomarkers", therefore, comprising an opportunity as treatment target(s). The review will have a special emphasis on lncRNA NNT-AS1.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , NADP Transhidrogenasas , ARN Largo no Codificante , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , ARN sin Sentido/genética , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Regulación Neoplásica de la Expresión Génica , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Proliferación Celular/genética , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular/genética , MicroARNs/genética
10.
Molecules ; 27(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35956878

RESUMEN

Nicotinamide nucleotide transhydrogenase (NNT) is involved in decreasing melanogenesis through tyrosinase degradation induced by cellular redox changes. Nicotinamide is a component of coenzymes, such as NAD+, NADH, NADP+, and NADPH, and its levels are modulated by NNT. Vitamin C and polydeoxyribonucleotide (PDRN) are also known to decrease skin pigmentation. We evaluated whether a mixture of nicotinamide, vitamin C, and PDRN (NVP-mix) decreased melanogenesis by modulating mitochondrial oxidative stress and NNT expression in UV-B-irradiated animals and in an in vitro model of melanocytes treated with conditioned media (CM) from UV-B-irradiated keratinocytes. The expression of NNT, GSH/GSSG, and NADPH/NADP+ in UV-B-irradiated animal skin was significantly decreased by UV-B radiation but increased by NVP-mix treatment. The expression of NNT, GSH/GSSG, and NADPH/NADP+ ratios decreased in melanocytes after CM treatment, although they increased after NVP-mix administration. In NNT-silenced melanocytes, the GSH/GSSG and NADPH/NADP+ ratios were further decreased by CM compared with normal melanocytes. NVP-mix decreased melanogenesis signals, such as MC1R, MITF, TYRP1, and TYRP2, and decreased melanosome transfer-related signals, such as RAB32 and RAB27A, in UV-B-irradiated animal skin. NVP-mix also decreased MC1R, MITF, TYRP1, TYRP2, RAB32, and RAB27A in melanocytes treated with CM from UV-irradiated keratinocytes. The expression of MC1R and MITF in melanocytes after CM treatment was unchanged by NNT silencing. However, the expression of TYRP1, TYRP2, RAB32, and RAB27A increased in NNT-silenced melanocytes after CM treatment. NVP-mix also decreased tyrosinase activity and melanin content in UV-B-irradiated animal skin and CM-treated melanocytes. In conclusion, NVP-mix decreased mitochondrial oxidative stress by increasing NNT expression and decreased melanogenesis by decreasing MC1R/MITF, tyrosinase, TYRP1, and TYRP2.


Asunto(s)
NADP Transhidrogenasas , Animales , Ácido Ascórbico/metabolismo , Ácido Ascórbico/farmacología , Disulfuro de Glutatión/metabolismo , Melaninas , Melanocitos/metabolismo , Monofenol Monooxigenasa/metabolismo , NADP/metabolismo , NADP Transhidrogenasas/metabolismo , Niacinamida/metabolismo , Niacinamida/farmacología , Polidesoxirribonucleótidos/metabolismo , Vitaminas/metabolismo
11.
Autophagy ; 18(10): 2397-2408, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35220898

RESUMEN

Mutations in the mitochondrial genome (mtDNA) are ubiquitous in humans and can lead to a broad spectrum of disorders. However, due to the presence of multiple mtDNA molecules in the cell, co-existence of mutant and wild-type mtDNAs (termed heteroplasmy) can mask disease phenotype unless a threshold of mutant molecules is reached. Importantly, the mutant mtDNA level can change across lifespan as mtDNA segregates in an allele- and cell-specific fashion, potentially leading to disease. Segregation of mtDNA is mainly evident in hepatic cells, resulting in an age-dependent increase of mtDNA variants, including non-synonymous potentially deleterious mutations. Here we modeled mtDNA segregation using a well-established heteroplasmic mouse line with mtDNA of NZB/BINJ and C57BL/6N origin on a C57BL/6N nuclear background. This mouse line showed a pronounced age-dependent NZB mtDNA accumulation in the liver, thus leading to enhanced respiration capacity per mtDNA molecule. Remarkably, liver-specific atg7 (autophagy related 7) knockout abolished NZB mtDNA accumulat ion, resulting in close-to-neutral mtDNA segregation through development into adulthood. prkn (parkin RBR E3 ubiquitin protein ligase) knockout also partially prevented NZB mtDNA accumulation in the liver, but to a lesser extent. Hence, we propose that age-related liver mtDNA segregation is a consequence of macroautophagic clearance of the less-fit mtDNA. Considering that NZB/BINJ and C57BL/6N mtDNAs have a level of divergence comparable to that between human Eurasian and African mtDNAs, these findings have potential implications for humans, including the safe use of mitochondrial replacement therapy.Abbreviations: Apob: apolipoprotein B; Atg1: autophagy-related 1; Atg7: autophagy related 7; Atp5a1: ATP synthase, H+ transporting, mitochondrial F1 complex, alpha subunit 1; BL6: C57BL/6N mouse strain; BNIP3: BCL2/adenovirus E1B interacting protein 3; FCCP: carbonyl cyanide 4-(trifluoromethoxy)phenylhydrazone; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; MAP1LC3A: microtubule-associated protein 1 light chain 3 alpha; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; mt-Atp8: mitochondrially encoded ATP synthase 8; MT-CO1: mitochondrially encoded cytochrome c oxidase I; MT-CO2: mitochondrially encoded cytochrome c oxidase II; mt-Co3: mitochondrially encoded cytochrome c oxidase III; mt-Cytb: mitochondrially encoded cytochrome b; mtDNA: mitochondrial DNA; MUL1: mitochondrial ubiquitin ligase activator of NFKB 1; nDNA: nuclear DNA; Ndufa9: NADH:ubiquinone oxireductase subunit A9; NDUFB8: NADH:ubiquinone oxireductase subunit B8; Nnt: nicotinamide nucleotide transhydrogenase; NZB: NZB/BINJ mouse strain; OXPHOS: oxidative phosphorylation; PINK1: PTEN induced putative kinase 1; Polg2: polymerase (DNA directed), gamma 2, accessory subunit; Ppara: peroxisome proliferator activated receptor alpha; Ppia: peptidylprolyl isomerase A; Prkn: parkin RBR E3 ubiquitin protein ligase; P10: post-natal day 10; P21: post-natal day 21; P100: post-natal day 100; qPCR: quantitative polymerase chain reaction; Rpl19: ribosomal protein L19; Rps18: ribosomal protein S18; SD: standard deviation; SEM: standard error of the mean; SDHB: succinate dehydrogenase complex, subunit B, iron sulfur (Ip); SQSTM1: sequestosome 1; Ssbp1: single-stranded DNA binding protein 1; TFAM: transcription factor A, mitochondrial; Tfb1m: transcription factor B1, mitochondrial; Tfb2m: transcription factor B2, mitochondrial; TOMM20: translocase of outer mitochondrial membrane 20; UQCRC2: ubiquinol cytochrome c reductase core protein 2; WT: wild-type.


Asunto(s)
Mitofagia , NADP Transhidrogenasas , Adenosina Trifosfato , Adulto , Animales , Apolipoproteínas/metabolismo , Apolipoproteínas B/metabolismo , Autofagia/genética , Dióxido de Carbono/metabolismo , Carbonil Cianuro p-Trifluorometoxifenil Hidrazona , Citocromos b/metabolismo , ADN Mitocondrial/genética , Proteínas de Unión al ADN/metabolismo , Complejo III de Transporte de Electrones , Complejo IV de Transporte de Electrones/metabolismo , Humanos , Hierro/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Mitocondriales , NAD/metabolismo , NADP Transhidrogenasas/metabolismo , PPAR alfa/metabolismo , Isomerasa de Peptidilprolil/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Ribosómicas/metabolismo , Proteína Sequestosoma-1/metabolismo , Succinato Deshidrogenasa/metabolismo , Azufre/metabolismo , Factores de Transcripción/metabolismo , Ubiquinona , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo
12.
Elife ; 112022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-35119362

RESUMEN

Granzyme A (GZMA) is a serine protease secreted by cytotoxic lymphocytes, with Gzma-/- mouse studies having informed our understanding of GZMA's physiological function. We show herein that Gzma-/- mice have a mixed C57BL/6J and C57BL/6N genetic background and retain the full-length nicotinamide nucleotide transhydrogenase (Nnt) gene, whereas Nnt is truncated in C57BL/6J mice. Chikungunya viral arthritis was substantially ameliorated in Gzma-/- mice; however, the presence of Nnt and the C57BL/6N background, rather than loss of GZMA expression, was responsible for this phenotype. A new CRISPR active site mutant C57BL/6J GzmaS211A mouse provided the first insights into GZMA's bioactivity free of background issues, with circulating proteolytically active GZMA promoting immune-stimulating and pro-inflammatory signatures. Remarkably, k-mer mining of the Sequence Read Archive illustrated that ≈27% of Run Accessions and ≈38% of BioProjects listing C57BL/6J as the mouse strain had Nnt sequencing reads inconsistent with a C57BL/6J genetic background. Nnt and C57BL/6N background issues have clearly complicated our understanding of GZMA and may similarly have influenced studies across a broad range of fields.


Asunto(s)
Granzimas/genética , Ratones Noqueados/genética , NADP Transhidrogenasas/genética , Animales , Artritis/virología , Fiebre Chikungunya/genética , Virus Chikungunya , Modelos Animales de Enfermedad , Antecedentes Genéticos , Genotipo , Granzimas/metabolismo , Ratones Endogámicos C57BL , NADP Transhidrogenasas/metabolismo
13.
Am J Physiol Cell Physiol ; 322(4): C666-C673, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35138175

RESUMEN

Redox homeostasis is elemental for the normal physiology of all cell types. Cells use multiple mechanisms to tightly regulate the redox balance. The onset and progression of many metabolic and aging-associated diseases occur due to the dysregulation of redox homeostasis. Thus, it is critical to identify and therapeutically target mechanisms that precipitate abnormalities in redox balance. Reactive oxygen species (ROS) produced within the immune cells regulate homeostasis, hyperimmune and hypoimmune cell responsiveness, apoptosis, immune response to pathogens, and tumor immunity. Immune cells have both cytosolic and organelle-specific redox regulatory systems to maintain appropriate levels of ROS. Nicotinamide nucleotide transhydrogenase (NNT) is an essential mitochondrial redox regulatory protein. Dysregulation of NNT function prevents immune cells from mounting an adequate immune response to pathogens, promotes a chronic inflammatory state associated with aging and metabolic diseases, and initiates conditions related to a dysregulated immune system such as autoimmunity. Although many studies have reported on NNT in different cell types, including cancer cells, relatively few studies have explored NNT in immune cells. This review provides an overview of NNT and focuses on the current knowledge of NNT in the immune cells.


Asunto(s)
NADP Transhidrogenasas , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo
14.
Antioxid Redox Signal ; 36(13-15): 864-884, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-34155914

RESUMEN

Significance: Proton-translocating NAD(P)+ transhydrogenase, also known as nicotinamide nucleotide transhydrogenase (NNT), catalyzes a reversible reaction coupling the protonmotive force across the inner mitochondrial membrane and hydride (H-, a proton plus two electrons) transfer between the mitochondrial pools of NAD(H) and NADP(H). The forward NNT reaction is a source of NADPH in the mitochondrial matrix, fueling antioxidant and biosynthetic pathways with reductive potential. Despite the greater emphasis given to the net forward reaction, the reverse NNT reaction that oxidizes NADPH also occurs in physiological and pathological conditions. Recent Advances: NNT (dys)function has been linked to various metabolic pathways and disease phenotypes. Most of these findings have been based on spontaneous loss-of-function Nnt mutations found in the C57BL/6J mouse strain (NntC57BL/6J mutation) and disease-causing Nnt mutations in humans. The present review focuses on recent advances based on the mouse NntC57BL/6J mutation. Critical Issues: Most studies associating NNT function with disease phenotypes have been based on comparisons between different strains of inbred mice (with or without the NntC57BL/6J mutation), which creates uncertainties over the actual contribution of NNT in the context of other potential genetic modifiers. Future Directions: Future research might contribute to understanding the role of NNT in pathological conditions and elucidate how NNT regulates physiological signaling through its forward and reverse reactions. The importance of NNT in redox balance and tumor cell proliferation makes it a potential target of new therapeutic strategies for oxidative-stress-mediated diseases and cancer. Antioxid. Redox Signal. 36, 864-884.


Asunto(s)
NADP Transhidrogenasa AB-Específica , NADP Transhidrogenasas , Animales , Ratones , Ratones Endogámicos C57BL , Proteínas Mitocondriales/metabolismo , NAD , NADP/metabolismo , NADP Transhidrogenasa AB-Específica/genética , NADP Transhidrogenasa AB-Específica/metabolismo , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Protones
15.
Am J Med Genet A ; 188(1): 89-98, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34545694

RESUMEN

Thyroid dysgenesis (TD) accounts for 80% cases of congenital hypothyroidism, which is the most common neonatal disorder. Until now, the gene mutations have been reported associated with TD can only account for 5% cases, suggesting the genetic heterogeneity of the pathology. Nicotinamide nucleotide transhydrogenase (NNT) plays a crucial role in regulating redox homeostasis, patients carrying NNT mutations have been described with a clinical phenotype of hypothyroidism. As TD risk is increased in the context of several syndromes and redox homeostasis is vital for thyroid development and function, NNT might be a candidate gene involved in syndromic TD. Therefore, we performed target sequencing (TS) in 289 TD patients for causative mutations in NNT and conducted functional analysis of the gene mutations. TS and Sanger sequence were used to screen the novel mutations. For functional analysis, we performed western blot, measurement of NADPH/NADPtotal and H2 O2 generation, cell proliferation, and wounding healing assay. As a result, three presumably pathogenic mutations (c.811G > A, p.Ala271Ser; c.2078G > A, p.Arg693His; and c.2581G > A, p.Val861Met) in NNT had been identified. Our results showed the damaging effect of NNT mutations on stability and catalytic activity of proteins and redox balance of cells. In conclusion, our findings provided novel insights into the role of the NNT isotype in thyroid physiopathology and broaden the spectrum of pathogenic genes associated with TD. However, the pathogenic mechanism of NNT in TD is still need to be investigated in further study.


Asunto(s)
Hipotiroidismo Congénito , NADP Transhidrogenasas , Disgenesias Tiroideas , China , Hipotiroidismo Congénito/genética , Humanos , Proteínas Mitocondriales , Mutación , NADP Transhidrogenasa AB-Específica , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Disgenesias Tiroideas/genética
16.
Chembiochem ; 23(3): e202100251, 2022 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-34351671

RESUMEN

Protein engineering has been used to enhance the activities, selectivities, and stabilities of enzymes. Frequently tradeoffs are observed, where improvements in some features can come at the expense of others. Nature uses modular assembly of active sites for complex, multi-step reactions, and natural "swing arm" mechanisms have evolved to transfer intermediates between active sites. Biomimetic polyethylene glycol (PEG) swing arms modified with NAD(H) have been explored to introduce synthetic swing arms into fused oxidoreductases. Here we report that increasing NAD(H)-PEG swing arms can improve the activity of synthetic formate:malate oxidoreductases as well as the thermal and operational stabilities of the biocatalysts. The modular assembly approach enables the KM values of new enzymes to be predictable, based on the parental enzymes. We describe four unique synthetic transhydrogenases that have no native homologs, and this platform could be easily extended for the predictive design of additional synthetic cofactor-independent transhydrogenases.


Asunto(s)
NADP Transhidrogenasas/metabolismo , NAD/metabolismo , Polietilenglicoles/metabolismo , Estabilidad de Enzimas , Modelos Moleculares , NAD/química , NADP Transhidrogenasas/química , Polietilenglicoles/química , Ingeniería de Proteínas
17.
Curr Microbiol ; 79(1): 32, 2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34931264

RESUMEN

Soluble pyridine nucleotide transhydrogenase (STH) transfers hydride between NADH and NADPH to maintain redox balance. In the present study, the sth gene from Gram-positive bacterium Streptomyces avermitilis (SaSTH) was expressed in Escherichia coli, and the recombinant STH protein was purified to homogeneity. Activity assays indicated that SaSTH was able to catalyze transhydrogenase reactions by using NADH or NADPH as reductants and thio-NAD+ as an oxidant. The apparent Km value for NADPH (74.5 µM) was lower than that for NADH (104.0 µM) and the apparent kcat/Km for NADPH (2704.7 mM-1 s-1) was higher than that for NADH (1129.8 mM-1 s-1). SaSTH showed optimal activity at 25 °C and at a pH of 6.2. Heat-inactivation studies revealed that SaSTH remained stable below 55 °C and that approximately 50% activity was preserved at 57 °C for 20 min. Analyses also showed that SaSTH activity was inhibited by divalent ions, particularly Co2+, Ni2+, and Zn2+. In addition, the transhydrogenase activity of SaSTH was inhibited by ATP and strongly stimulated by ADP and AMP. In summary, we characterized a recombinant enzyme exhibiting STH activity from Gram-positive bacteria for the first time. Our findings provide new options for cofactor engineering and industrial biocatalytic processes.


Asunto(s)
NADP Transhidrogenasas , Streptomyces , Cinética , NADP/metabolismo , NADP Transhidrogenasas/genética , NADP Transhidrogenasas/metabolismo , Streptomyces/genética , Streptomyces/metabolismo
18.
FEBS Lett ; 595(23): 2922-2930, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34738635

RESUMEN

Euglena gracilis produces ATP in the anaerobic mitochondria with concomitant wax ester formation, and NADH is essential for ATP formation and fatty acid synthesis in the mitochondria. This study demonstrated that mitochondrial cofactor conversion by nicotinamide nucleotide transhydrogenase (NNT), converting NADPH/NAD+ to NADP+ /NADH, is indispensable for sustaining anaerobic metabolism. Silencing of NNT genes significantly decreased wax ester production and cellular viability during anaerobiosis but had no such marked effects under aerobic conditions. An analogous phenotype was observed in the silencing of the gene encoding a mitochondrial NADP+ -dependent malic enzyme. These results suggest that the reducing equivalents produced in glycolysis are shuttled to the mitochondria as malate, where cytosolic NAD+ regeneration is coupled with mitochondrial NADPH generation.


Asunto(s)
Anaerobiosis , Euglena/metabolismo , NADP Transhidrogenasas/metabolismo , NADP/metabolismo , NAD/metabolismo , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , NADP Transhidrogenasas/genética
19.
Sci Rep ; 11(1): 21234, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707181

RESUMEN

Membrane bound nicotinamide nucleotide transhydrogenase (TH) catalyses the hydride transfer from NADH to NADP+. Under physiological conditions, this reaction is endergonic and must be energized by the pmf, coupled to transmembrane proton transport. Recent structures of transhydrogenase holoenzymes suggest new mechanistic details, how the long-distance coupling between hydride transfer in the peripheral nucleotide binding sites and the membrane-localized proton transfer occurs that now must be tested experimentally. Here, we provide protocols for the efficient expression and purification of the Escherichia coli transhydrogenase and its reconstitution into liposomes, alone or together with the Escherichia coli F1F0 ATP synthase. We show that E. coli transhydrogenase is a reversible enzyme that can also work as a NADPH-driven proton pump. In liposomes containing both enzymes, NADPH driven H+-transport by TH is sufficient to instantly fuel ATP synthesis, which adds TH to the pool of pmf generating enzymes. If the same liposomes are energized with ATP, NADPH production by TH is stimulated > sixfold both by a pH gradient or a membrane potential. The presented protocols and results reinforce the tight coupling between hydride transfer in the peripheral nucleotide binding sites and transmembrane proton transport and provide powerful tools to investigate their coupling mechanism.


Asunto(s)
ATPasas de Translocación de Protón Bacterianas/metabolismo , Transferencia de Energía , Proteínas de Escherichia coli/metabolismo , NADP Transhidrogenasas/metabolismo , Adenosina Trifosfato/metabolismo , ATPasas de Translocación de Protón Bacterianas/química , Proteínas de Escherichia coli/química , Transporte Iónico , Liposomas/metabolismo , NADP Transhidrogenasas/química
20.
Cell ; 184(16): 4268-4283.e20, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34233163

RESUMEN

Ultraviolet (UV) light and incompletely understood genetic and epigenetic variations determine skin color. Here we describe an UV- and microphthalmia-associated transcription factor (MITF)-independent mechanism of skin pigmentation. Targeting the mitochondrial redox-regulating enzyme nicotinamide nucleotide transhydrogenase (NNT) resulted in cellular redox changes that affect tyrosinase degradation. These changes regulate melanosome maturation and, consequently, eumelanin levels and pigmentation. Topical application of small-molecule inhibitors yielded skin darkening in human skin, and mice with decreased NNT function displayed increased pigmentation. Additionally, genetic modification of NNT in zebrafish alters melanocytic pigmentation. Analysis of four diverse human cohorts revealed significant associations of skin color, tanning, and sun protection use with various single-nucleotide polymorphisms within NNT. NNT levels were independent of UVB irradiation and redox modulation. Individuals with postinflammatory hyperpigmentation or lentigines displayed decreased skin NNT levels, suggesting an NNT-driven, redox-dependent pigmentation mechanism that can be targeted with NNT-modifying topical drugs for medical and cosmetic purposes.


Asunto(s)
Factor de Transcripción Asociado a Microftalmía/metabolismo , NADP Transhidrogenasas/metabolismo , Pigmentación de la Piel/efectos de la radiación , Rayos Ultravioleta , Animales , Línea Celular , Estudios de Cohortes , AMP Cíclico/metabolismo , Daño del ADN , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Predisposición Genética a la Enfermedad , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanosomas/efectos de los fármacos , Melanosomas/metabolismo , Melanosomas/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/metabolismo , NADP Transhidrogenasas/antagonistas & inhibidores , Oxidación-Reducción/efectos de los fármacos , Oxidación-Reducción/efectos de la radiación , Polimorfismo de Nucleótido Simple/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis/efectos de los fármacos , Proteolisis/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pigmentación de la Piel/efectos de los fármacos , Pigmentación de la Piel/genética , Ubiquitina/metabolismo , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...